Optimizando la vuelta al terreno de juego: Doble tarea vs. entrenamiento de fuerza tradicional para la rehabilitación del ligamento cruzado anterior (LCA)

Autores/as

  • Alberto Mouriño Cabaleiro Universidade da Coruña
  • Juan J. Fernández-Romero Universidade da Coruña
  • Helena Vila Universidade de Vigo
  • Miguel A. Saavedra-García Universidade da Coruña

DOI:

https://doi.org/10.17398/1885-7019.21.265

Palabras clave:

ACL, cognition, dual task

Resumen

La utilización del entrenamiento de doble tarea en medidas preventivas para lesiones del ligamento cruzado anterior (LCA) o en el proceso de rehabilitación post-reconstrucción del ligamento cruzado anterior (LCAr) ha despertado interés dentro de la comunidad científica debido a sus posibles impactos en el fortalecimiento de los músculos periarticulares. El propósito de esta investigación fue evaluar la efectividad de un programa de entrenamiento de fuerza convencional (grupo experimental 1, G1; n= 5) en comparación con un entrenamiento de fuerza que incorpora la toma de decisiones (grupo experimental 2, G2; n= 6), en jugadores de deportes de equipo que han sido sometidos a LCAr. Se llevó a cabo un ensayo clínico aleatorio, controlado y simple ciego, en el que los atletas con LCAr fueron asignados al azar. Se realizó una evaluación isométrica de la extensión de cadera en la posición de 0º grados de cadera, la flexión de rodilla tanto a 90º como a 15º y la extensión de rodilla con 90º de flexión de cadera y la rodilla en 90º, así como dos tipos de saltos unilaterales, el salto a una pierna con contramovimiento (CMJu) y el salto medial a distancia (MHD). Ambos grupos de participantes recibieron ejercicios de fortalecimiento muscular de miembros inferiores, realizados dos veces por semana durante un período de 12 semanas. Sin embargo, los atletas en G2 realizaron una tarea adicional en doble tarea, respondiendo a señales luminosas para llevar a cabo las repeticiones del ejercicio. Además, ambos grupos realizaron un conjunto adicional de ejercicios destinados a corregir asimetrías detectadas. Las variables analizadas incluyeron la extensión de cadera, la flexión de rodilla a 15º y 90º, la extensión de rodilla, el CMJu y el MHD. Se realizaron pruebas no paramétricas para muestras no relacionadas, para comparar las rodillas sana y lesionada. Como resultado, se observaron mejoras significativas en la extensión de cadera (p=0.046) y la flexión de rodilla a 90º (p=0.028) y 15º (p=0.028) en la rodilla lesionada en el G2. En conclusión, los hallazgos sugieren que la inclusión de actividades de toma de decisiones en doble tarea puede mejorar la fuerza y la capacidad de salto en comparación con el entrenamiento de fuerza tradicional para atletas de deportes de equipo con LCAr.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Alvarenga, G., Kiyomoto, H. D., Martinez, E. C., Polesello, G., & Alves, V. L. dos S. (2019). Normative isometric hip muscle force values assessed by a manual dynamometer. Acta Ortopedica Brasileira, 27(2), 124–128. https://doi.org/10.1590/1413-785220192702202596

Ardern, C. L., Webster, K. E., Taylor, N. F., & Feller, J. A. (2011, June). Return to sport following anterior cruciate ligament reconstruction surgery: A systematic review and meta-analysis of the state of play. British Journal of Sports Medicine, Vol. 45, pp. 596–606. https://doi.org/10.1136/bjsm.2010.076364

Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1–29. https://doi.org/10.1146/ANNUREV-PSYCH-120710-100422

Bahr, R. (2016). Why screening tests to predict injury do not work-and probably never will…: a critical review. British Journal of Sports Medicine, 50(13), 776–780. https://doi.org/10.1136/BJSPORTS-2016-096256

Barber-Westin, S. D., & Noyes, F. R. (2011). Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy - Journal of Arthroscopic and Related Surgery, 27(12), 1697–1705. https://doi.org/10.1016/j.arthro.2011.09.009

Begalle, R. L., DiStefano, L. J., Blackburn, T., & Padua, D. A. (2012). Quadriceps and hamstrings coactivation during common therapeutic exercises. Journal of Athletic Training, 47(4), 396–405. https://doi.org/10.4085/1062-6050-47.4.01

Bertozzi, F., Fischer, P. D., Hutchison, K. A., Zago, M., Sforza, C., & Monfort, S. M. (2023). Associations between cognitive function and ACL injury-related biomechanics: A systematic review. Sports Health. https://doi.org/10.1177/19417381221146557

Bittencourt, N. F. N., Meeuwisse, W. H., Mendonça, L. D., Nettel-Aguirre, A., Ocarino, J. M., & Fonseca, S. T. (2016). Complex systems approach for sports injuries: Moving from risk factor identification to injury pattern recognition - Narrative review and new concept. British Journal of Sports Medicine, 50(21), 1309–1314. https://doi.org/10.1136/BJSPORTS-2015-095850

Brochin, G., Stewart, A., Boone, T., Board, R., Astorino, T., Baker, J., … Zhou, B. (2023). The need for neurocognitive tasks in ACL rehabilitation protocols: A critically appraised topic. Official Research Journal of the Amercian Society of Exercise Physiologists, 26(2).

Buckthorpe, M. (2021, August 1). Recommendations for movement re-training after ACL reconstruction. Sports Medicine, Vol. 51, pp. 1601–1618. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40279-021-01454-5

Buckthorpe, M., Danelon, F., La Rosa, G., Nanni, G., Stride, M., & Della Villa, F. (2020). Recommendations for hamstring function recovery after ACL reconstruction. Sports Medicine. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40279-020-01400-x

Burcal, C. J., Needle, A. R., Custer, L., & Rosen, A. B. (2019, August 1). The effects of cognitive loading on motor behavior in injured individuals: A systematic review. Sports Medicine, Vol. 49, pp. 1233–1253. Springer International Publishing. https://doi.org/10.1007/s40279-019-01116-7

Chaaban, C. R., Turner, J. A., & Padua, D. A. (2023). Think outside the box: Incorporating secondary cognitive tasks into return to sport testing after ACL reconstruction. Frontiers in Sports and Active Living, Vol. 4. Frontiers Media S.A. https://doi.org/10.3389/fspor.2022.1089882

Cristiani, R., Mikkelsen, C., Forssblad, M., Engström, B., & Stålman, A. (2019). Only one patient out of five achieves symmetrical knee function 6 months after primary anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 27(11), 3461–3470. https://doi.org/10.1007/s00167-019-05396-4

Della Villa, F., Hägglund, M., Della Villa, S., Ekstrand, J., & Waldén, M. (2021). High rate of second ACL injury following ACL reconstruction in male professional footballers: An updated longitudinal analysis from 118 players in the UEFA Elite Club Injury Study. British Journal of Sports Medicine, 55, 1350–1357. https://doi.org/10.1136/bjsports-2020-103555

Dingenen, B., Truijen, J., Bellemans, J., & Gokeler, A. (2019). Test–retest reliability and discriminative ability of forward, medial and rotational single-leg hop tests. Knee, 26(5), 978–987. https://doi.org/10.1016/j.knee.2019.06.010

Giesche, F., Vieluf, S., Wilke, J., Engeroff, T., Niederer, D., & Banzer, W. (2022). Cortical motor planning and biomechanical stability during unplanned jump landings in men with anterior cruciate ligament reconstruction. Journal of Athletic Training, 57(6), 547–556. https://doi.org/10.4085/1062-6050-0544.20

Goes, R. A., Cossich, V. R. A., França, B. R., Campos, A. S., Souza, G. G. A., Bastos, R. D. C., & Neto, J. A. G. (2020). Return to play after anterior cruciate ligament reconstruction. Revista Brasileira de Medicina Do Esporte, 26(6), 478–486. https://doi.org/10.1590/1517-8692202026062019_0056

Gokeler, A., McKeon, P. O., & Hoch, M. C. (2020). Shaping the Functional Task Environment in Sports Injury Rehabilitation: A Framework to Integrate Perceptual-Cognitive Training in Rehabilitation. Athletic Training & Sports Health Care, 12(6), 283–292. https://doi.org/10.3928/19425864-20201016-01

Gokeler, A., Neuhaus, D., Benjaminse, A., Grooms, D. R., & Baumeister, J. (2019, June 1). Principles of motor learning to support neuroplasticity after ACL injury: Implications for optimizing performance and reducing risk of second ACL injury. Sports Medicine, Vol. 49, pp. 853–865. Springer International Publishing. https://doi.org/10.1007/s40279-019-01058-0

Gokeler, A., Seil, R., Kerkhoffs, G., & Verhagen, E. (2018, December 1). A novel approach to enhance ACL injury prevention programs. Journal of Experimental Orthopaedics, Vol. 5. Springer Berlin Heidelberg. https://doi.org/10.1186/s40634-018-0137-5

Gokeler, A., Tosarelli, F., Buckthorpe, M., & Della Villa, F. (2023). Neurocognitive errors are common in non-contact ACL injuries in professional male soccer players. Journal of Athletic Training. https://doi.org/10.4085/1062-6050-0209.22

Grooms, D. R., Chaput, M., Simon, J. E., Criss, C. R., Myer, G. D., & Diekfuss, J. A. (2023). Combining Neurocognitive and Functional Tests to Improve Return-to-Sport Decisions Following ACL Reconstruction. The Journal of Orthopaedic and Sports Physical Therapy, (8), 1–5. https://doi.org/10.2519/jospt.2023.11489

Gustavsson, A., Neeter, C., Thomeé, P., Grävare Silbernagel, K., Augustsson, J., Thomeé, R., & Karlsson, J. (2006). A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 14(8), 778–788. https://doi.org/10.1007/s00167-006-0045-6

Helms, E. R., Cronin, J., Storey, A., & Zourdos, M. C. (2016). Application of the Repetitions in Reserve-Based Rating of Perceived Exertion Scale for Resistance Training. Strength and Conditioning Journal, 38(4), 42–49. https://doi.org/10.1519/SSC.0000000000000218

Herman, D. C., & Barth, J. T. (2016). Drop-Jump landing varies with baseline neurocognition: Implications for anterior cruciate ligament injury risk and prevention. Am J Sports Med, 44(9), 2347–2353. https://doi.org/10.1177/0363546516657338

Herman, D. C., Zaremski, J. L., Vincent, H. K., & Vincent, K. R. (2015). Effect of Neurocognition and Concussion on Musculoskeletal Injury Risk. https://doi.org/10.1249/JSR.0000000000000157

Hopkins, J. T., & Ingersoll, C. D. (2000). Arthrogenic muscle inhibition: A limiting factor in joint rehabilitation. Journal of Sport Rehabilitation, 9(2), 135–159. https://doi.org/10.1123/JSR.9.2.135

Janczyk, M., & Huestegge, L. (2017). Effects of a no-go Task 2 on Task 1 performance in dual - tasking: From benefits to costs. Attention, Perception, and Psychophysics, 79(3), 796–806. https://doi.org/10.3758/s13414-016-1257-6

Kotsifaki, A., Korakakis, V., Graham-Smith, P., Sideris, V., & Whiteley, R. (2021). Vertical and Horizontal Hop Performance: Contributions of the Hip, Knee, and Ankle. Sports Health, 13(2), 128–135. https://doi.org/10.1177/1941738120976363

Kotsifaki, A., Korakakis, V., Whiteley, R., Van Rossom, S., & Jonkers, I. (2020, February 1). Measuring only hop distance during single leg hop testing is insufficient to detect deficits in knee function after ACL reconstruction: A systematic review and meta-analysis. British Journal of Sports Medicine, Vol. 54, pp. 139–153. BMJ Publishing Group. https://doi.org/10.1136/bjsports-2018-099918

Kotsifaki, A., Whiteley, R., Van Rossom, S., Korakakis, V., Bahr, R., Sideris, V., … Jonkers, I. (2021). Single leg hop for distance symmetry masks lower limb biomechanics: Time to discuss hop distance as decision criterion for return to sport after ACL reconstruction? British Journal of Sports Medicine, 56(5), 2499–256. https://doi.org/10.1136/bjsports-2020-103677

Lahti, J., Mendiguchia, J., Ahtiainen, J., Anula, L., Kononen, T., Kujala, M., … Morin, J. B. (2020). Multifactorial individualised programme for hamstring muscle injury risk reduction in professional football: protocol for a prospective cohort study. BMJ Open Sport & Exercise Medicine, 6(1), e000758. https://doi.org/10.1136/bmjsem-2020-000758

Larsen, J. B., Farup, J., Lind, M., & Dalgas, U. (2015). Muscle strength and functional performance is markedly impaired at the recommended time point for sport return after anterior cruciate ligament reconstruction in recreational athletes. Human Movement Science, 39, 73–87. https://doi.org/10.1016/j.humov.2014.10.008

Maffiuletti, N. A., Aagaard, P., Blazevich, A. J., Folland, J., Tillin, N., & Duchateau, J. (2016, June 1). Rate of force development: physiological and methodological considerations. European Journal of Applied Physiology, Vol. 116, pp. 1091–1116. Springer Verlag. https://doi.org/10.1007/s00421-016-3346-6

Mas-Mas, D., Arnau Mollá, A., & Romero Naranjo, F. (2023). Dual-task and movement: a bibliometric study based on high-impact search engines. Retos, 995–1009.

McIsaac, T. L., Lamberg, E. M., & Muratori, L. M. (2015). Building a framework for a dual task taxonomy. BioMed Research International, 2015. https://doi.org/10.1155/2015/591475

Meldrum, D., Cahalane, E., Conroy, R., Fitzgerald, D., & Hardiman, O. (2007). Maximum voluntary isometric contraction: Reference values and clinical application. Amyotrophic Lateral Sclerosis, 8(1), 47–55. https://doi.org/10.1080/17482960601012491

Miguel, L., Pastrana, R., María, J., Egido, G., & Zafra, A. O. (2024). Psychological aspects associated with ACL rehabilitation and recurrence in football players: a systematic review Aspectos psicológicos asociados a la rehabilitación del LCA y las recidivas en futbolistas: una revisión sistemática. In Retos (Vol. 55). Retrieved from https://recyt.fecyt.es/index.php/retos/index

Mouriño-Cabaleiro, A., Vila, H., Saavedra-García, M. A., & Fernández-Romero, J. J. (2023). Los músculos isquiosurales y su capacidad profiláctica sobre la translación tibial anterior en lesión de ligamento cruzado anterior: Una revisión sistemática. In Int. J. Morphol (Vol. 41).

Nagamatsu, L. S., Liang Hsu, C., Voss, M. W., Chan, A., Bolandzadeh, N., Handy, T. C., … Gilles Kemoun, F. (2016). The Neurocognitive Basis for Impaired Dual-Task Performance in Senior Fallers. https://doi.org/10.3389/fnagi.2016.00020

Ness, B. M., Zimney, K., Schweinle, W. E., & Cleland, J. A. (2020). Dual task assessment implications for anterior cruciate ligament injury: A systematic review. International Journal of Sports Physical Therapy, 15(6), 840–855. https://doi.org/10.26603/ijspt20200840

Norte, G., Rush, J., & Sherman, D. (2021). Arthrogenic Muscle Inhibition: Best Evidence, Mechanisms, and Theory for Treating the Unseen in Clinical Rehabilitation. Journal of Sport Rehabilitation, 1–19. https://doi.org/10.1123/jsr.2021-0139

Paterno, M. V., Huang, B., Thomas, S., Hewett, T. E., & Schmitt, L. C. (2017). Clinical Factors That Predict a Second ACL Injury After ACL Reconstruction and Return to Sport: Preliminary Development of a Clinical Decision Algorithm. Orthopaedic Journal of Sports Medicine, 5(12). https://doi.org/10.1177/2325967117745279

Piskin, D., Benjaminse, A., Dimitrakis, P., & Gokeler, A. (2021). Neurocognitive and neurophysiological functions related to ACL injury: A framework for neurocognitive approaches in rehabilitation and return-to-sports tests. Sports Health. https://doi.org/10.1177/19417381211029265

Raud, L., Westerhausen, R., Dooley, N., & Huster, R. J. (2020). Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms. NeuroImage, 210. https://doi.org/10.1016/j.neuroimage.2020.116582

Rice, D. A., & McNair, P. J. (2010, December). Quadriceps Arthrogenic Muscle Inhibition: Neural Mechanisms and Treatment Perspectives. Seminars in Arthritis and Rheumatism, Vol. 40, pp. 250–266. https://doi.org/10.1016/j.semarthrit.2009.10.001

Shrier, I. (2015). Strategic Assessment of Risk and Risk Tolerance (StARRT) framework for return-to-play decision-making. https://doi.org/10.1136/bjsports

Simon, J. E., Millikan, N., Yom, J., & Grooms, D. R. (2020). Neurocognitive challenged hops reduced functional performance relative to traditional hop testing. Physical Therapy in Sport, 41, 97–102. https://doi.org/10.1016/j.ptsp.2019.12.002

Smeets, A., Verschueren, S., Staes, F., Vandenneucker, H., Claes, S., & Vanrenterghem, J. (2021). Athletes with an ACL reconstruction show a different neuromuscular response to environmental challenges compared to uninjured athletes. Gait and Posture, 83, 44–51. https://doi.org/10.1016/j.gaitpost.2020.09.032

Swanik C. (2015). Brains and Sprains: The Brain’s Role in Noncontact Anterior Cruciate Ligament Injuries. Journal of Athletic Training, 50(10), 1100–1102. https://doi.org/10.4085/1062-6050-50.10.08

Swanik, C. B., Covassin, T., Stearne, D. J., & Schatz, P. (2007). The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. American Journal of Sports Medicine, 35(6), 943–948. https://doi.org/10.1177/0363546507299532

Walker, J. M., Brunst, C. L., Chaput, M., Wohl, T. R., & Grooms, D. R. (2021). Integrating neurocognitive challenges into injury prevention training: A clinical commentary. https://doi.org/10.1016/j.ptsp.2021.05.005

Young, A. (1993). Current issues in arthrogenous inhibition. Annals of the Rheumatic Diseases, 52(11), 829. https://doi.org/10.1136/ARD.52.11.829

Zaffagnini, S., Grassi, A., Muccioli, G. M. M., Tsapralis, K., Ricci, M., Bragonzoni, L., … Marcacci, M. (2014). Return to sport after anterior cruciate ligament reconstruction in professional soccer players. Knee, 21(3), 731–735. https://doi.org/10.1016/J.KNEE.2014.02.005

Descargas

Publicado

2025-03-24

Cómo citar

Optimizando la vuelta al terreno de juego: Doble tarea vs. entrenamiento de fuerza tradicional para la rehabilitación del ligamento cruzado anterior (LCA). (2025). E-Balonmano Com, 21(2), 265-276. https://doi.org/10.17398/1885-7019.21.265