Efectos de una propuesta de entrenamiento de los músculos respiratorios de 4 semanas para atletas semiprofesionales

Autores/as

  • Aldo Vasquez Universidad de Extremadura
  • Marta Camacho-Cardenosa Clinical Management Unit of Endocrinology and Nutrition - GC17, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain.
  • Juan Ramón Sánchez Bayón Facultad de ciencias del Deporte. Universidad de Extremadura
  • Alba Camacho-Cardenosa Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Spain.
  • Rafael Timon Facultad de Ciencias del Deporte. Universidad de Extremadura
  • Guillermo Olcina Facultad de Ciencias del Deporte. Universidad de Extremadura

DOI:

https://doi.org/10.17398/1885-7019.21.91

Palabras clave:

Presión inspiratoria muscular, Flujo inspiratorio máximo, Entrenamiento aeróbico, Rendimiento en carrera

Resumen

Objetivo: Este estudio evaluó el efecto de un nuevo protocolo de entrenamiento de los músculos respiratorios sobre el rendimiento de carrera de atletas de resistencia semiprofesionales. Métodos: La muestra estuvo compuesta por 11 atletas de resistencia (edad 25,5 ± 5,7 años; IMC 22,6 ± 3,4 kg·m2), quienes realizaron una prueba inicial de resistencia respiratoria incremental, posteriormente se aplicó un protocolo de entrenamiento de los músculos inspiratorios. Mediante un espirómetro se calcularon las siguientes variables: Presión Inspiratoria Muscular, Flujo Inspiratorio Máximo y S-INDEX (cmH2O), que se entiende como un índice de estrés o la relación entre presión y volumen. También se evaluó la realización de una prueba de carrera de 12 minutos con la valoración de la frecuencia cardíaca. El protocolo de entrenamiento constó de 12 sesiones con una frecuencia de 3 veces por semana durante 4 semanas de (6 x 80% de la Presión Inspiratoria Muscular). Se aplicó una t de Student (p <0,05), la magnitud del cambio (Δ) y el tamaño del efecto (TE) para identificar los cambios en el tiempo. Resultados: Se encontraron mejoras en la función respiratoria de los atletas en la presión inspiratoria muscular (TE 1,91; Δ= +44%), el flujo inspiratorio máximo (TE 1,37; Δ= +22%) y el S-INDEX (TE 1,37 Δ= +25%). La distancia recorrida en la prueba de 12 minutos (TE 0,11; Δ= +7%) también mejoró después del protocolo de entrenamiento de los músculos respiratorios. Conclusiones: Esta es una novedosa propuesta de entrenamiento de los músculos respiratorios para producir mejoras en la función de los músculos respiratorios y puede usarse como estrategia de competición previo a una prueba de carrera en deportistas de resistencia semiprofesionales.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Achten, J., & Jeukendrup, A. E. (2003). Heart Rate Monitoring. Sports Medicine, 33(7), 517–538. https://doi.org/10.2165/00007256-200333070-00004

Ando, R., Ohya, T., Kusanagi, K., Koizumi, J., Ohnuma, H., Katayama, K., & Suzuki, Y. (2020). Effect of inspiratory resistive training on diaphragm shear modulus and accessory inspiratory muscle activation. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme, 45(8), 851–856. https://doi.org/10.1139/apnm-2019-0906

Aparicio, V. A., Carbonell-Baeza, A., Ruiz, J. R., Aranda, P., Tercedor, P., Delgado-Fernández, M., & Ortega, F. B. (2013). Fitness testing as a discriminative tool for the diagnosis and monitoring of fibromyalgia. Scandinavian Journal of Medicine & Science in Sports, 23(4), 415–423. https://doi.org/10.1111/j.1600-0838.2011.01401.x

Barnes, K. R., & Ludge, A. R. (2021). Inspiratory Muscle Warm-up Improves 3,200-m Running Performance in Distance Runners. The Journal of Strength & Conditioning Research, 35(6), 1739. https://doi.org/10.1519/JSC.0000000000002974

Bonafiglia, J. T., Preobrazenski, N., & Gurd, B. J. (2021). A Systematic Review Examining the Approaches Used to Estimate Interindividual Differences in Trainability and Classify Individual Responses to Exercise Training. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.665044

Brown, P. I., Sharpe, G. R., & Johnson, M. A. (2008). Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea. European Journal of Applied Physiology, 104(1), 111–117. https://doi.org/10.1007/s00421-008-0794-7

Cahalin, L. P., & Arena, R. (2015). Novel Methods of Inspiratory Muscle Training via the Test of Incremental Respiratory Endurance (TIRE). Exercise and Sport Sciences Reviews, 43(2), 84. https://doi.org/10.1249/JES.0000000000000042

Chang, Y.-C., Chang, H.-Y., Ho, C.-C., Lee, P.-F., Chou, Y.-C., Tsai, M.-W., & Chou, L.-W. (2021). Effects of 4-Week Inspiratory Muscle Training on Sport Performance in College 800-Meter Track Runners. Medicina, 57(1), Article 1. https://doi.org/10.3390/medicina57010072

Charususin, N., Gosselink, R., McConnell, A., Demeyer, H., Topalovic, M., Decramer, M., & Langer, D. (2016). Inspiratory muscle training improves breathing pattern during exercise in COPD patients. EUROPEAN RESPIRATORY JOURNAL, 47(4), Article 4.

Crosfill, M. L., & Widdicombe, J. G. (1961). Physical characteristics of the chest and lungs and the work of breathing in different mammalian species. The Journal of Physiology, 158(1), 1–14.

Dempsey, J. A., Romer, L., Rodman, J., Miller, J., & Smith, C. (2006). Consequences of exercise-induced respiratory muscle work. Respiratory Physiology & Neurobiology, 151(2), 242–250. https://doi.org/10.1016/j.resp.2005.12.015

Derbakova, A., Khuu, S., Ho, K., Lewis, C., Ma, T., Melo, L. T., Zabjek, K. F., Goligher, E. C., Brochard, L., Fregonezi, G., & Reid, W. D. (2020). Neck and Inspiratory Muscle Recruitment during Inspiratory Loading and Neck Flexion. Medicine and Science in Sports and Exercise, 52(7), 1610–1616. https://doi.org/10.1249/mss.0000000000002271

Dominelli, P. B., Archiza, B., Ramsook, A. H., Mitchell, R. A., Peters, C. M., Molgat-Seon, Y., Henderson, W. R., Koehle, M. S., Boushel, R., & Sheel, A. W. (2017). Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise. Experimental Physiology, 102(11), 1535–1547. https://doi.org/10.1113/ep086566

Duarte, A., Soares, P. P., Pescatello, L., & Farinatti, P. (2015). Aerobic training improves vagal reactivation regardless of resting vagal control. Medicine and Science in Sports and Exercise, 47(6), 1159–1167. https://doi.org/10.1249/mss.0000000000000532

Edwards, A. M., & Walker, R. E. (2009). Inspiratory Muscle Training and Endurance: A Central Metabolic Control Perspective. International Journal of Sports Physiology and Performance, 4(1), 122–128. https://doi.org/10.1123/ijspp.4.1.122

Edwards, A. M., Wells, C., & Butterly, R. (2008). Concurrent inspiratory muscle and cardiovascular training differentially improves both perceptions of effort and 5000 m running performance compared with cardiovascular training alone. British Journal of Sports Medicine, 42(10), 823–827. https://doi.org/10.1136/bjsm.2007.045377

Enright, S. J., & Unnithan, V. B. (2011). Effect of inspiratory muscle training intensities on pulmonary function and work capacity in people who are healthy: A randomized controlled trial. Physical Therapy, 91(6), 894–905. https://doi.org/10.2522/ptj.20090413

Fabero-Garrido, R., del Corral, T., Angulo-Díaz-Parreño, S., Plaza-Manzano, G., Martín-Casas, P., Cleland, J. A., Fernández-de-las-Peñas, C., & López-de-Uralde-Villanueva, I. (2022). Respiratory muscle training improves exercise tolerance and respiratory muscle function/structure post-stroke at short term: A systematic review and meta-analysis. Annals of Physical and Rehabilitation Medicine, 65(5), 101596. https://doi.org/10.1016/j.rehab.2021.101596

Fernández-Lázaro, D., Gallego-Gallego, D., Corchete, L. A., Fernández Zoppino, D., González-Bernal, J. J., García Gómez, B., & Mielgo-Ayuso, J. (2021). Inspiratory Muscle Training Program Using the PowerBreath®: Does It Have Ergogenic Potential for Respiratory and/or Athletic Performance? A Systematic Review with Meta-Analysis. International Journal of Environmental Research and Public Health, 18(13), Article 13. https://doi.org/10.3390/ijerph18136703

HajGhanbari, B., Yamabayashi, C., Buna, T. R., Coelho, J. D., Freedman, K. D., Morton, T. A., Palmer, S. A., Toy, M. A., Walsh, C., Sheel, A. W., & Reid, W. D. (2013). Effects of Respiratory Muscle Training on Performance in Athletes: A Systematic Review With Meta-Analyses. The Journal of Strength & Conditioning Research, 27(6), 1643. https://doi.org/10.1519/JSC.0b013e318269f73f

Hopkins, W. G. (2000). Measures of Reliability in Sports Medicine and Science. Sports Medicine, 30(1), 1–15. https://doi.org/10.2165/00007256-200030010-00001

Johnson, M. A., Sharpe, G. R., & Brown, P. I. (2007). Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. European Journal of Applied Physiology, 101(6), 761–770. https://doi.org/10.1007/s00421-007-0551-3

Karsten, M., Ribeiro, G. S., Esquivel, M. S., & Matte, D. L. (2018). The effects of inspiratory muscle training with linear workload devices on the sports performance and cardiopulmonary function of athletes: A systematic review and meta-analysis. Physical Therapy in Sport, 34, 92–104. https://doi.org/10.1016/j.ptsp.2018.09.004

Kwok, T. M. K., & Jones, A. Y. M. (2009). Target-flow Inspiratory Muscle Training Improves Running Performance in Recreational Runners: A Randomized Controlled Trial. Hong Kong Physiotherapy Journal, 27(1), 48–54. https://doi.org/10.1016/S1013-7025(10)70008-7

Langer, D., Ciavaglia, C., Faisal, A., Webb, K. A., Neder, J. A., Gosselink, R., Dacha, S., Topalovic, M., Ivanova, A., & O’Donnell, D. E. (2018). Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD. Journal of Applied Physiology (Bethesda, Md.: 1985), 125(2), 381–392. https://doi.org/10.1152/japplphysiol.01078.2017

Langer, D., Jacome, C., Charususin, N., Scheers, H., McConnell, A., Decramer, M., & Gosselink, R. (2013). Measurement validity of an electronic inspiratory loading device during a loaded breathing task in patients with COPD. Respiratory Medicine, 107(4), 633–635. https://doi.org/10.1016/j.rmed.2013.01.020

Mackała, K., Kurzaj, M., Okrzymowska, P., Stodółka, J., Coh, M., & Rożek-Piechura, K. (2019). The Effect of Respiratory Muscle Training on the Pulmonary Function, Lung Ventilation, and Endurance Performance of Young Soccer Players. International Journal of Environmental Research and Public Health, 17(1), E234. https://doi.org/10.3390/ijerph17010234

Miller, M. R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Crapo, R., Enright, P., van der Grinten, C. P. M., Gustafsson, P., Jensen, R., Johnson, D. C., MacIntyre, N., McKay, R., Navajas, D., Pedersen, O. F., Pellegrino, R., Viegi, G., Wanger, J., & ATS/ERS Task Force. (2005). Standardisation of spirometry. The European Respiratory Journal, 26(2), 319–338. https://doi.org/10.1183/09031936.05.00034805

Mills, D. E., Johnson, M. A., McPhilimey, M. J., Williams, N. C., Gonzalez, J. T., Barnett, Y. A., & Sharpe, G. R. (2014). Influence of oxidative stress, diaphragm fatigue, and inspiratory muscle training on the plasma cytokine response to maximum sustainable voluntary ventilation. Journal of Applied Physiology (Bethesda, Md.: 1985), 116(8), 970–979. https://doi.org/10.1152/japplphysiol.01271.2013

Mills, D. E., Mills, D. E., Johnson, M. A., McPhilimey, M. J., Williams, N. C., Gonzalez, J. T., Barnett, Y. A., & Sharpe, G. R. (2013). The effects of inspiratory muscle training on plasma interleukin-6 concentration during cycling exercise and a volitional mimic of the exercise hyperpnea. Journal of Applied Physiology (Bethesda, Md., 115(8), 1163–1172. https://doi.org/10.1152/japplphysiol.00272.2013

Quanjer, P. H., Tammeling, G. J., Cotes, J. E., Pedersen, O. F., Peslin, R., & Yernault, J. C. (1993). Lung volumes and forced ventilatory flows. The European Respiratory Journal, 6 Suppl 16, 5–40. https://doi.org/10.1183/09041950.005s1693

Ramsook, A. H., Molgat-Seon, Y., Schaeffer, M. R., Wilkie, S. S., Camp, P. G., Reid, W. D., Romer, L. M., & Guenette, J. A. (2017). Effects of inspiratory muscle training on respiratory muscle electromyography and dyspnea during exercise in healthy men. Journal of Applied Physiology (Bethesda, Md.: 1985), 122(5), 1267–1275. https://doi.org/10.1152/japplphysiol.00046.2017

Rehder-Santos, P., Abreu, R. M., Signini, É. D. F., Silva, C. D. da, Sakaguchi, C. A., Dato, C. C., & Catai, A. M. (2021). Moderate- and High-Intensity Inspiratory Muscle Training Equally Improves Inspiratory Muscle Strength and Endurance—A Double-Blind Randomized Controlled Trial. International Journal of Sports Physiology and Performance, 16(8), 1111–1119. https://doi.org/10.1123/ijspp.2020-0189

Romer, L. M., McConnell, A. K., & Jones, D. A. (2002). Effects of inspiratory muscle training on time-trial performance in trained cyclists. Journal of Sports Sciences, 20(7), 547–590. https://doi.org/10.1080/026404102760000053

Sadek, Z., Salami, A., Joumaa, W. H., Awada, C., Ahmaidi, S., & Ramadan, W. (2018). Best mode of inspiratory muscle training in heart failure patients: A systematic review and meta-analysis. European Journal of Preventive Cardiology, 25(16), 1691–1701. https://doi.org/10.1177/2047487318792315

Segizbaeva, M. O., & Aleksandrova, N. P. (2021). Respiratory Muscle Strength and Ventilatory Function Outcome: Differences Between Trained Athletes and Healthy Untrained Persons. In M. Pokorski (Ed.), Medical and Biomedical Updates (pp. 89–97). Springer International Publishing. https://doi.org/10.1007/5584_2020_554

Sheel, A. W. (2002). Respiratory Muscle Training in Healthy Individuals. Sports Medicine, 32(9), 567–581. https://doi.org/10.2165/00007256-200232090-00003

Sheel, A. W., Boushel, R., & Dempsey, J. A. (2018). Competition for blood flow distribution between respiratory and locomotor muscles: Implications for muscle fatigue. Journal of Applied Physiology (Bethesda, Md., 125(3), 820–831. https://doi.org/10.1152/japplphysiol.00189.2018

Sheel, A. W., & Romer, L. M. (2012). Ventilation and respiratory mechanics. Comprehensive Physiology, 2(2), 1093–1142. https://doi.org/10.1002/cphy.c100046

Tong, T. K., Fu, F. H., Chung, P. K., Eston, R., Lu, K., Quach, B., Nie, J., & So, R. (2008). The effect of inspiratory muscle training on high-intensity, intermittent running performance to exhaustion. Applied Physiology, Nutrition, and Metabolism, 33(4), 671–681. https://doi.org/10.1139/H08-050

Volianitis, S., McConnell, A. K., Koutedakis, Y., McNaughton, L. R., Backx, K., & Jones, D. A. (2001). Inspiratory muscle training improves rowing performance. https://wlv.openrepository.com/handle/2436/7229

Walsh, J. J., Bonafiglia, J. T., Goldfield, G. S., Sigal, R. J., Kenny, G. P., Doucette, S., Hadjiyannakis, S., Alberga, A. S., Prud’homme, D., & Gurd, B. J. (2020). Interindividual variability and individual responses to exercise training in adolescents with obesity. Applied Physiology, Nutrition, and Metabolism, 45(1), 45–54. https://doi.org/10.1139/apnm-2019-0088

Weibel, E. R. (1984). The Pathway for Oxygen: Structure and Function in the Mammalian Respiratory System. Harvard University Press.

Witt, J. D., Guenette, J. A., Rupert, J. L., McKenzie, D. C., & Sheel, A. W. (2007). Inspiratory muscle training attenuates the human respiratory muscle metaboreflex. The Journal of Physiology, 584(Pt 3), 1019–1028. https://doi.org/10.1113/jphysiol.2007.140855

Descargas

Publicado

2025-01-20

Cómo citar

Efectos de una propuesta de entrenamiento de los músculos respiratorios de 4 semanas para atletas semiprofesionales. (2025). E-Balonmano Com, 21(1), 91-100. https://doi.org/10.17398/1885-7019.21.91